
Parallel Graph AnalytiX (PGX)
In the following set of notebooks you can find code to execute simple graph operations using as key
component the Parallel Graph AnalytiX (PGX) graph analysis toolkit.

There are few ways to interact with PGX:

interactive shell
PGX client
REST api

The interactive shell can be started by executing $ORACLE_HOME/md/property_graph/pgx/bin/pgx . Most
of the code used in the following notebooks will work in the shell with minimal changes (needs to remove the
code required by python to interact with java). Obviously visualizations and pure python code can't used in
the shell, but there is full access to PGX methods.
The PGX client is mainly a layer on top of the REST api when connecting to a remote PGX instance, while
acting like the interactive shell when executed in local mode. Locally it can be embedded into exiting java
applications to have graph databases.
When using the PGX client to connect to a remote PGX instance it will take care of all the REST api
interactions. Worth nothing that most of REST api works in an asynchronous way: the one doing a call will
need to go back again and again asking if the job is done. The PGX client take care of that providing blocking
methods which will stop the executing and wait till the job on the server is done.
More details on the various ways to use PGX can be found on
https://docs.oracle.com/cd/E56133_01/latest/reference/overview/usage.html
(https://docs.oracle.com/cd/E56133_01/latest/reference/overview/usage.html).

Requirements & Environment
This notebook make use of *PGX 3.1.1* which is "embedded" into Oracle Database. It is available as a patch
to update the out-of-the-box version (Patch 28577866: MISSING LATEST PGX 3.1.X FUNCTIONS IN
ORACLE 12.2 AND 18.1).
The PGX server is configured to listen on port 7007 without SSL and authentication is disabled (these
settings are defined into conf/server.conf). Access to the host local filesystem has also been enabled in the
conf/pgx.conf file to allow local storage and loading of a graph from a remote client.

PGX can be found in $ORACLE_HOME/md/property_graph/pgx . The libraries required by the client
connecting to the server are stored in $ORACLE_HOME/md/property_graph/lib .
The PGX server needs to be started by executing $ORACLE_HOME/md/property_graph/pgx/bin/start-
server (or deployed instead as a webapp in an application server like Weblogic).

This Notebook is using python 3.6, but the graph code works on python 2.7 too. *JPype1* is required and can
be installed using pip install JPype1 (this package is the one connecting python with the JVM where
the PGX java commands will be executed). graphviz is used to display the sample graph and can be installed
using pip install graphviz too, this method will not work with huge graphs because the resulting image
would be too big. pandas is used to easily manipulate, analyze and visualize data structures in python and
can also be installed using pip install pandas .
Alternative

Notebooks in this serie
1 Graph by hand (1%20Graph%20by%20hand.ipynb)

https://docs.oracle.com/cd/E56133_01/latest/reference/overview/usage.html
file:///C:/Users/Gianni/Documents/GitHub/jupyterlab/Graph%20database%20from%20scratch/1%20Graph%20by%20hand.ipynb

2 Create graph in database (2%20Create%20graph%20in%20database.ipynb)
3 Load graph from database (3%20Load%20graph%20from%20database.ipynb)
4 Save and load graph as file (4%20Save%20and%20load%20graph%20as%20file.ipynb)
5 Convert PGQL to SQL (5%20Convert%20PGQL%20to%20SQL.ipynb)

file:///C:/Users/Gianni/Documents/GitHub/jupyterlab/Graph%20database%20from%20scratch/2%20Create%20graph%20in%20database.ipynb
file:///C:/Users/Gianni/Documents/GitHub/jupyterlab/Graph%20database%20from%20scratch/3%20Load%20graph%20from%20database.ipynb
file:///C:/Users/Gianni/Documents/GitHub/jupyterlab/Graph%20database%20from%20scratch/4%20Save%20and%20load%20graph%20as%20file.ipynb
file:///C:/Users/Gianni/Documents/GitHub/jupyterlab/Graph%20database%20from%20scratch/5%20Convert%20PGQL%20to%20SQL.ipynb

Create a graph by hand
A graph can be built by hand simply defining nodes and edges one by one with all their properties and labels.

Import required packages

In [1]:

from jpype import *
import os

Setup JVM
Start JVM passing the PGX 3.1.1 classpath.
getDefaultJVMPath() will try to detect the location of java in the system, it can be replaced by the string
defining the path to libjvm.so .

In [2]:

%load -s _get_pgx_class_path ../graphUtils.py
def _get_pgx_class_path(pgx_directory):
 class_path_list = []
 for root, dirs, files in os.walk(pgx_directory):
 for file in files:
 if file.endswith('.jar'):
 class_path_list.append(os.path.join(root, file))
 return ':'.join(class_path_list)

In [3]:

pgxLibsPath = '/opt/oracle/product/18c/dbhome_1/md/property_graph/lib'
startJVM(getDefaultJVMPath(), "-ea", "-Djava.class.path="+_get_pgx_class_path(pgxLibsPa
th))

Create a session on the PGX 3.1.1 server
Need to start the PGX 3.1.1 server before to continue:

$ORACLE_HOME/md/property_graph/pgx/bin/start-server

In [4]:

session = JClass('oracle.pgx.api.Pgx').createSession("http://localhost:7007/", "my_sess
ion")

Create a new graph

In [5]:

new builder
builder = session.newGraphBuilder(JClass('oracle.pgx.common.types.IdType').LONG)

define some nodes (node ID is unique!)
builder.addVertex(1).addLabel("person").setProperty("name", "Francesco").setProperty("c
ountry", "Italy")
builder.addVertex(2).addLabel("person").setProperty("name", "Christian").setProperty("c
ountry", "Switzerland")
builder.addVertex(3).addLabel("session").setProperty("name", "Starting an Oracle Analyt
ics Cloud Journey from 0")
builder.addVertex(4).addLabel("event").setProperty("name", "ITOUG 2019")
builder.addVertex(5).addLabel("country").setProperty("name", "Italy")
builder.addVertex(6).addLabel("country").setProperty("name", "Switzerland")
builder.addVertex(7).addLabel("continent").setProperty("name", "Europe")

define some edges (edge ID is unique!)
builder.addEdge(0, 1, 2).setLabel("friendOf")
builder.addEdge(1, 1, 3).setLabel("presents")
builder.addEdge(2, 2, 3).setLabel("presents")
builder.addEdge(3, 3, 4).setLabel("scheduledAt")
builder.addEdge(4, 1, 5).setLabel("livesIn")
builder.addEdge(5, 2, 6).setLabel("livesIn")
builder.addEdge(6, 5, 7).setLabel("partOf")
builder.addEdge(7, 6, 7).setLabel("partOf")
builder.addEdge(8, 4, 5).setLabel("happensIn")

Build new graph

In [6]:

graph = builder.build()

print(graph)

Visualize the graph

Out[5]:

<jpype._jclass.oracle.pgx.api.graphbuilder.EdgeBuilderImpl at 0x7f76c821ac
f8>

PgxGraph[name=anonymous_graph_3,N=7,E=9,created=1551456729641]

In [7]:

%load -s renderGraph ../graphUtils.py
def renderGraph(graph):
 from graphviz import Digraph

 # get all the vertices of the graph
 vertices = graph.getVertices()
 # create a new visualization
 dot = Digraph(comment='Graph')
 # loop over vertices
 for v in vertices.iterator():
 dot.node(str(v.getId()), v.getProperty("name"))

 # loop over vertices to get 'out' edges
 for v in vertices.iterator():
 edges = v.getOutEdges()
 # loop over 'out' edges
 for e in edges:
 dot.edge(str(e.getSource().getId()), str(e.getDestination().getId()), label
=e.getLabel())

 # return (display) graph
 return dot

In [8]:

renderGraph(graph)

Out[8]:

Francesco

Christian

friendOf

Starting an Oracle Analytics Cloud Journey from 0

presents

Italy

livesIn

presents

Switzerland

livesIn

ITOUG 2019

scheduledAt

happensIn

Europe

partOf

partOf

Create a graph in the database
Using the SH sample schema as base (available on https://github.com/oracle/db-sample-schemas
(https://github.com/oracle/db-sample-schemas)), taking customers, countries, products and sales as source
tables for the graph.

Create a new empty graph in the database
Call a package method, all the available methods and their properties can be found at
https://docs.oracle.com/en/database/oracle/oracle-database/18/spgdg/OPG_APIS-reference.html
(https://docs.oracle.com/en/database/oracle/oracle-database/18/spgdg/OPG_APIS-reference.html) This is
equivalent to

BEGIN
 OPG_APIS.CREATE_PG('mysales', 4, 8, '');
END;

In [1]:

import cx_Oracle
con = cx_Oracle.connect('scott/Admin123@localhost:1521/ORCLPDB1')
cur = con.cursor()
cur.callproc('OPG_APIS.CREATE_PG', ['mysales', 4, 8, ''])
cur.close()
con.close()

In [2]:

%load_ext sql
%sql oracle://scott:Admin123@localhost:1521/?service_name=ORCLPDB1

Out[2]:

'Connected: scott@'

https://github.com/oracle/db-sample-schemas
https://docs.oracle.com/en/database/oracle/oracle-database/18/spgdg/OPG_APIS-reference.html

In [3]:

%%sql
SELECT owner, table_name
FROM all_tables
WHERE owner = 'SCOTT'
AND table_name like 'MYSALES%'
ORDER BY table_name

Inspect source data to define IDs and properties

In [4]:

%%sql
SELECT 'customer ID' as id, MIN(cust_id) as min_id, MAX(cust_id) as max_id, COUNT(DISTI
NCT cust_id) as unique_id, COUNT(*) as nrows FROM sh.customers
UNION ALL
SELECT 'product ID', MIN(prod_id), MAX(prod_id), COUNT(DISTINCT prod_id) as unique_id,
COUNT(*) as nrows FROM sh.products
UNION ALL
SELECT 'country ID', MIN(country_id), MAX(country_id), COUNT(DISTINCT country_id) as un
ique_id, COUNT(*) as nrows FROM sh.countries

There are potential overlaps in IDs of the 3 tables, but rows are unique by ID.
A solution could be to use a sequence to make sure to have uniques IDs for vertices.
In this case a "shortcut" (cheat/workaround) will be used to make sure there is no overlap, simply by adding a
fixed number to each ID of the products and countries tables.

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[3]:

owner table_name

SCOTT MYSALESGE$

SCOTT MYSALESGT$

SCOTT MYSALESIT$

SCOTT MYSALESSS$

SCOTT MYSALESVT$

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[4]:

id min_id max_id unique_id nrows

customer ID 1 104500 55500 55500

product ID 13 148 72 72

country ID 52769 52791 23 23

In [5]:

%%sql
SELECT 'customer ID' as id, MIN(cust_id) as min_id, MAX(cust_id) as max_id FROM sh.cust
omers
UNION ALL
SELECT 'product ID', MIN(prod_id + 200000), MAX(prod_id + 200000) FROM sh.products
UNION ALL
SELECT 'country ID', MIN(country_id + 300000), MAX(country_id + 300000) FROM sh.countri
es

Create nodes
The T column is a value representing the data type (ref.
https://docs.oracle.com/cd/E56133_01/latest/reference/loader/file-system/plain-text-formats.html
(https://docs.oracle.com/cd/E56133_01/latest/reference/loader/file-system/plain-text-formats.html))

1) Countries
Data by row

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[5]:

id min_id max_id

customer ID 1 104500

product ID 200013 200148

country ID 352769 352791

https://docs.oracle.com/cd/E56133_01/latest/reference/loader/file-system/plain-text-formats.html

In [6]:

%%sql result <<
SELECT country_id + 300000 as vid
, 'label' as k
, 1 as t
, 'country' as v
, null as vn FROM sh.countries
UNION ALL
SELECT country_id + 300000 as vid
, 'name' as k
, 1 as t
, country_name as v
, null as vn FROM sh.countries
UNION ALL
SELECT country_id + 300000 as vid
, 'isoCode' as k
, 1 as t
, country_iso_code as v
, null as vn FROM sh.countries
UNION ALL
SELECT country_id + 300000 as vid
, 'sourceId' as k
, 2 as t
, TO_CHAR(country_id) as v
, country_id as vn FROM sh.countries
ORDER BY 1,2

In [7]:

import pandas as pd

result_df = result.DataFrame()
result_df.head(8)

Insert rows in MYSALESVT$
Because there isn't any date value, the 'vt' column isn't defined

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.
Returning data to local variable result

Out[7]:

vid k t v vn

0 352769 isoCode 1 SG NaN

1 352769 label 1 country NaN

2 352769 name 1 Singapore NaN

3 352769 sourceId 2 52769 52769.0

4 352770 isoCode 1 IT NaN

5 352770 label 1 country NaN

6 352770 name 1 Italy NaN

7 352770 sourceId 2 52770 52770.0

In [8]:

%%sql
INSERT INTO MYSALESVT$ (vid, k, t, v, vn)
SELECT country_id + 300000 as vid
, 'label' as k
, 1 as t
, 'country' as v
, null as vn FROM sh.countries
UNION ALL
SELECT country_id + 300000 as vid
, 'name' as k
, 1 as t
, country_name as v
, null as vn FROM sh.countries
UNION ALL
SELECT country_id + 300000 as vid
, 'isoCode' as k
, 1 as t
, country_iso_code as v
, null as vn FROM sh.countries
UNION ALL
SELECT country_id + 300000 as vid
, 'sourceId' as k
, 2 as t
, TO_CHAR(country_id) as v
, country_id as vn FROM sh.countries
ORDER BY 1,2

2) Products
Data by row

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
92 rows affected.

Out[8]:

[]

In [9]:

%%sql result <<
SELECT prod_id + 200000 as vid
, 'label' as k
, 1 as t
, 'product' as v
, null as vn FROM sh.products
UNION ALL
SELECT prod_id + 200000 as vid
, 'name' as k
, 1 as t
, prod_name as v
, null as vn FROM sh.products
UNION ALL
SELECT prod_id + 200000 as vid
, 'category' as k
, 1 as t
, prod_category as v
, null as vn FROM sh.products
UNION ALL
SELECT prod_id + 200000 as vid
, 'subcategory' as k
, 1 as t
, prod_subcategory as v
, null as vn FROM sh.products
UNION ALL
SELECT prod_id + 200000 as vid
, 'listPrice' as k
, 3 as t
, TO_CHAR(prod_list_price) as v
, prod_list_price as vn FROM sh.products
UNION ALL
SELECT prod_id + 200000 as vid
, 'sourceId' as k
, 2 as t
, TO_CHAR(prod_id) as v
, prod_id as vn FROM sh.products
ORDER BY 1,2

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.
Returning data to local variable result

In [10]:

result_df = result.DataFrame()
result_df.head(12)

Insert rows in MYSALESVT$
Because there isn't any date value, the 'vt' column isn't defined

Out[10]:

vid k t v vn

0 200013 category 1 Photo None

1 200013 label 1 product None

2 200013 listPrice 3 899.99 899.99

3 200013 name 1 5MP Telephoto Digital Camera None

4 200013 sourceId 2 13 13

5 200013 subcategory 1 Cameras None

6 200014 category 1 Peripherals and Accessories None

7 200014 label 1 product None

8 200014 listPrice 3 999.99 999.99

9 200014 name 1 17" LCD w/built-in HDTV Tuner None

10 200014 sourceId 2 14 14

11 200014 subcategory 1 Monitors None

In [11]:

%%sql
INSERT INTO MYSALESVT$ (vid, k, t, v, vn)
SELECT prod_id + 200000 as vid
, 'label' as k
, 1 as t
, 'product' as v
, null as vn FROM sh.products
UNION ALL
SELECT prod_id + 200000 as vid
, 'name' as k
, 1 as t
, prod_name as v
, null as vn FROM sh.products
UNION ALL
SELECT prod_id + 200000 as vid
, 'category' as k
, 1 as t
, prod_category as v
, null as vn FROM sh.products
UNION ALL
SELECT prod_id + 200000 as vid
, 'subcategory' as k
, 1 as t
, prod_subcategory as v
, null as vn FROM sh.products
UNION ALL
SELECT prod_id + 200000 as vid
, 'listPrice' as k
, 3 as t
, TO_CHAR(prod_list_price) as v
, prod_list_price as vn FROM sh.products
UNION ALL
SELECT prod_id + 200000 as vid
, 'sourceId' as k
, 2 as t
, TO_CHAR(prod_id) as v
, prod_id as vn FROM sh.products
ORDER BY 1,2

3) Customers
Data by row

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
432 rows affected.

Out[11]:

[]

In [12]:

%%sql result <<
SELECT cust_id as vid
, 'label' as k
, 1 as t
, 'customer' as v
, null as vn FROM sh.customers
UNION ALL
SELECT cust_id as vid
, 'name' as k
, 1 as t
, cust_first_name || ' ' || cust_last_name as v
, null as vn FROM sh.customers
UNION ALL
SELECT cust_id as vid
, 'gender' as k
, 1 as t
, cust_gender as v
, null as vn FROM sh.customers
UNION ALL
SELECT cust_id as vid
, 'maritalStatus' as k
, 1 as t
, cust_marital_status as v
, null as vn FROM sh.customers
WHERE cust_marital_status IS NOT NULL
UNION ALL
SELECT cust_id as vid
, 'yearOfBirth' as k
, 2 as t
, TO_CHAR(cust_year_of_birth) as v
, cust_year_of_birth as vn FROM sh.customers
UNION ALL
SELECT cust_id as vid
, 'sourceId' as k
, 2 as t
, TO_CHAR(cust_id) as v
, cust_id as vn FROM sh.customers
ORDER BY 1,2

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.
Returning data to local variable result

In [13]:

result_df = result.DataFrame()
result_df.head(12)

Insert rows in MYSALESVT$
Because there isn't any date value, the 'vt' column isn't defined

Out[13]:

vid k t v vn

0 1 gender 1 M NaN

1 1 label 1 customer NaN

2 1 name 1 Abigail Kessel NaN

3 1 sourceId 2 1 1.0

4 1 yearOfBirth 2 1946 1946.0

5 2 gender 1 F NaN

6 2 label 1 customer NaN

7 2 name 1 Anne Koch NaN

8 2 sourceId 2 2 2.0

9 2 yearOfBirth 2 1957 1957.0

10 3 gender 1 M NaN

11 3 label 1 customer NaN

In [14]:

%%sql
INSERT INTO MYSALESVT$ (vid, k, t, v, vn)
SELECT cust_id as vid
, 'label' as k
, 1 as t
, 'customer' as v
, null as vn FROM sh.customers
UNION ALL
SELECT cust_id as vid
, 'name' as k
, 1 as t
, cust_first_name || ' ' || cust_last_name as v
, null as vn FROM sh.customers
UNION ALL
SELECT cust_id as vid
, 'gender' as k
, 1 as t
, cust_gender as v
, null as vn FROM sh.customers
WHERE cust_gender IS NOT NULL
UNION ALL
SELECT cust_id as vid
, 'maritalStatus' as k
, 1 as t
, cust_marital_status as v
, null as vn FROM sh.customers
WHERE cust_marital_status IS NOT NULL
UNION ALL
SELECT cust_id as vid
, 'yearOfBirth' as k
, 2 as t
, TO_CHAR(cust_year_of_birth) as v
, cust_year_of_birth as vn FROM sh.customers
WHERE cust_year_of_birth IS NOT NULL
UNION ALL
SELECT cust_id as vid
, 'sourceId' as k
, 2 as t
, TO_CHAR(cust_id) as v
, cust_id as vn FROM sh.customers
ORDER BY 1,2

Quick check on the actual content of the graph (only
nodes)

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
315572 rows affected.

Out[14]:

[]

In [15]:

%%sql
SELECT v, COUNT(DISTINCT vid) FROM mysalesvt$
WHERE k = 'label'
GROUP BY v
ORDER BY 1

In [16]:

%%sql
SELECT k, COUNT(DISTINCT vid) FROM mysalesvt$
GROUP BY k
ORDER BY 2 DESC,1

Create edges (the orders)

1) Create a sequence
There isn't a real ID in the 'SALES' table and also there isn't one for the relation between customers and
countries, therefore there isn't anything on which to build EID (edge ID)

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[15]:

v COUNT(DISTINCTVID)

country 23

customer 55500

product 72

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[16]:

k COUNT(DISTINCTVID)

label 55595

name 55595

sourceId 55595

gender 55500

yearOfBirth 55500

maritalStatus 38072

category 72

listPrice 72

subcategory 72

isoCode 23

In [17]:

%%sql
CREATE SEQUENCE mysales_eid_seq

2) Customer -['livesIn']-> Country

In [18]:

%%sql result <<
SELECT null as eid
, cust_id as svid
, country_id as dvid
, 'livesIn' as el
, 'stateProvince' as k
, 1 as t
, cust_state_province as v FROM sh.customers
ORDER BY 2

In [19]:

result_df = result.DataFrame()
result_df.head()

Insert rows in MYSALESGE$
Because there isn't any date or numeric value, the 'vn' and 'vt' column aren't defined

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[17]:

[]

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.
Returning data to local variable result

Out[19]:

eid svid dvid el k t v

0 None 1 52789 livesIn stateProvince 1 England - Norfolk

1 None 2 52778 livesIn stateProvince 1 Salamanca

2 None 3 52770 livesIn stateProvince 1 Zeeland

3 None 4 52770 livesIn stateProvince 1 Utrecht

4 None 5 52789 livesIn stateProvince 1 England - Norfolk

In [20]:

%%sql
INSERT INTO MYSALESGE$ (eid, svid, dvid, el, k, t, v)
SELECT mysales_eid_seq.nextval
, svid, dvid, el, k, t, v FROM (
SELECT cust_id as svid
, country_id as dvid
, 'livesIn' as el
, 'stateProvince' as k
, 1 as t
, cust_state_province as v FROM sh.customers
ORDER BY 2
)

3) Customer -['buys']-> Product
Create a temporary table to assign a unique ID acting as EID to sales using the sequence

In [21]:

%%sql
CREATE TABLE tmp_orders AS
SELECT mysales_eid_seq.nextval as eid
, svid, dvid, el, quantity_sold, amount_sold, order_date FROM (
SELECT null as eid
, cust_id as svid
, prod_id + 200000 as dvid
, 'buys' as el
, SUM(quantity_sold) as quantity_sold
, SUM(amount_sold) as amount_sold
, time_id as order_date FROM sh.sales
GROUP BY cust_id, prod_id, time_id
)

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
55500 rows affected.

Out[20]:

[]

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[21]:

[]

In [22]:

%%sql result <<
SELECT eid
, svid
, dvid
, el
, 'quantity' as k
, 3 as t
, TO_CHAR(quantity_sold) as v
, quantity_sold as vn
, null as vt FROM tmp_orders
UNION ALL
SELECT eid
, svid
, dvid
, el
, 'amount' as k
, 3 as t
, TO_CHAR(amount_sold) as v
, amount_sold as vn
, null as vt FROM tmp_orders
UNION ALL
SELECT eid
, svid
, dvid
, el
, 'orderDate' as k
, 5 as t
, TO_CHAR(order_date, 'YYYY-MM-DD') as v
, null as vn
, order_date as vt FROM tmp_orders
ORDER BY 1,2,3,4,5

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.
Returning data to local variable result

In [23]:

result_df = result.DataFrame()
result_df.head(12)

Insert rows in MYSALESGE$

Out[23]:

eid svid dvid el k t v vn vt

0 55501 2273 200013 buys amount 3 1232.16 1232.16 NaT

1 55501 2273 200013 buys orderDate 5 1998-01-10 None 1998-01-10

2 55501 2273 200013 buys quantity 3 1 1 NaT

3 55502 1422 200013 buys amount 3 1232.16 1232.16 NaT

4 55502 1422 200013 buys orderDate 5 1998-01-20 None 1998-01-20

5 55502 1422 200013 buys quantity 3 1 1 NaT

6 55503 3783 200013 buys amount 3 1232.16 1232.16 NaT

7 55503 3783 200013 buys orderDate 5 1998-01-20 None 1998-01-20

8 55503 3783 200013 buys quantity 3 1 1 NaT

9 55504 6543 200013 buys amount 3 1232.16 1232.16 NaT

10 55504 6543 200013 buys orderDate 5 1998-01-20 None 1998-01-20

11 55504 6543 200013 buys quantity 3 1 1 NaT

In [24]:

%%sql
INSERT INTO MYSALESGE$ (eid, svid, dvid, el, k, t, v, vn, vt)
SELECT eid
, svid
, dvid
, el
, 'quantity' as k
, 3 as t
, TO_CHAR(quantity_sold) as v
, quantity_sold as vn
, null as vt FROM tmp_orders
UNION ALL
SELECT eid
, svid
, dvid
, el
, 'amount' as k
, 3 as t
, TO_CHAR(amount_sold) as v
, amount_sold as vn
, null as vt FROM tmp_orders
UNION ALL
SELECT eid
, svid
, dvid
, el
, 'orderDate' as k
, 5 as t
, TO_CHAR(order_date, 'YYYY-MM-DD') as v
, null as vn
, order_date as vt FROM tmp_orders
ORDER BY 1,2,3,4,5

Drop the temporary table and sequence (as it is just a one-shot loading)

In [25]:

%%sql
DROP TABLE tmp_orders

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
2085399 rows affected.

Out[24]:

[]

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[25]:

[]

In [26]:

%%sql
DROP SEQUENCE mysales_eid_seq

Quick check on the actual content of the graph (only
edges)

In [27]:

%%sql
SELECT el, COUNT(DISTINCT eid) FROM mysalesge$
GROUP BY el
ORDER BY 1

In [28]:

%%sql
SELECT k, COUNT(DISTINCT eid) FROM mysalesge$
GROUP BY k
ORDER BY 2 DESC,1

The graph content is now created into the database. In the next notebook
(3%20Load%20graph%20from%20database.ipynb) the graph will be loaded into PGX and used for analysis.

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[26]:

[]

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[27]:

el COUNT(DISTINCTEID)

buys 695133

livesIn 55500

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[28]:

k COUNT(DISTINCTEID)

amount 695133

orderDate 695133

quantity 695133

stateProvince 55500

file:///C:/Users/Gianni/Documents/GitHub/jupyterlab/Graph%20database%20from%20scratch/3%20Load%20graph%20from%20database.ipynb

Load a graph from database into PGX
The graph is stored in an Oracle 18c (18.3.0) database and will be loaded in the PGX server installed with
the database.

In [1]:

%load_ext sql
%sql oracle://scott:Admin123@localhost:1521/?service_name=ORCLPDB1

1) Prepare for loading
setup environment (load libs etc.)
connect to PGX
build graph configuration

Import required packages

In [2]:

from jpype import *
import os

Setup & start JVM

In [3]:

%load -s _get_pgx_class_path ../graphUtils.py
def _get_pgx_class_path(pgx_directory):
 class_path_list = []
 for root, dirs, files in os.walk(pgx_directory):
 for file in files:
 if file.endswith('.jar'):
 class_path_list.append(os.path.join(root, file))
 return ':'.join(class_path_list)

In [4]:

pgxLibsPath = '/opt/oracle/product/18c/dbhome_1/md/property_graph/lib'
startJVM(getDefaultJVMPath(), "-ea", "-Djava.class.path="+_get_pgx_class_path(pgxLibsPa
th))

Out[1]:

'Connected: scott@'

Create session
Need to start the PGX 3.1.1 server before to continue:

$ORACLE_HOME/md/property_graph/pgx/bin/start-server

In [5]:

session = JClass('oracle.pgx.api.Pgx').createSession("http://localhost:7007/", "my_sess
ion")
print(session)

Build config for nodes and edges properties (full load of all the possible existing properties)

In [6]:

%%sql
WITH properties AS (
 SELECT DISTINCT k, t, 'Vertex' AS kind
 FROM mysalesvt$
 UNION ALL
 SELECT DISTINCT k, t, 'Edge' AS kind
 FROM mysalesge$
)
,cfg AS (
 SELECT '.add' || kind || 'Property("' || k || '",PropertyTypeClass.'
 || CASE WHEN t = 1 THEN 'STRING' WHEN t = 2 THEN 'INTEGER' WHEN t = 3 THEN 'FL
OAT' WHEN t = 5 THEN 'DATE' WHEN t = 6 THEN 'BOOLEAN' END
 || ')' AS prop
 FROM properties
) SELECT LISTAGG(prop,'') WITHIN GROUP(ORDER BY prop) FROM cfg

Need to replace 'DATE' types
date types are still not supported in PGQL as results or sort elements, therefore it's easier to "cheat" and

load the date as if it would be a string

PgxSession[ID=a595284d-8182-485a-b37b-677074c76e9c,source=my_session]

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[6]:

.addEdgeProperty("amount",PropertyTypeClass.FLOAT).addEdgeProperty("orderDate",PropertyTypeCla

In [7]:

GraphConfigBuilderClass = JClass('oracle.pgx.config.GraphConfigBuilder')
PropertyTypeClass = JClass('oracle.pgx.common.types.PropertyType')

cfg = GraphConfigBuilderClass.forPropertyGraphRdbms()\
 .setUsername("scott")\
 .setPassword("Admin123")\
 .setName("mysales")\
 .setMaxNumConnections(4)\
 .setJdbcUrl("jdbc:oracle:thin:@localhost:1521/ORCLPDB1")\
 .setLoadEdgeLabel(True)\
 .setDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSSSSSXXX")\
 .addEdgeProperty("amount",PropertyTypeClass.FLOAT).addEdgeProperty("orderDate",Prop
ertyTypeClass.STRING).addEdgeProperty("quantity",PropertyTypeClass.FLOAT).addEdgeProper
ty("stateProvince",PropertyTypeClass.STRING).addVertexProperty("category",PropertyTypeC
lass.STRING).addVertexProperty("gender",PropertyTypeClass.STRING).addVertexProperty("is
oCode",PropertyTypeClass.STRING).addVertexProperty("label",PropertyTypeClass.STRING).ad
dVertexProperty("listPrice",PropertyTypeClass.FLOAT).addVertexProperty("maritalStatus",
PropertyTypeClass.STRING).addVertexProperty("name",PropertyTypeClass.STRING).addVertexP
roperty("sourceId",PropertyTypeClass.INTEGER).addVertexProperty("subcategory",PropertyT
ypeClass.STRING).addVertexProperty("yearOfBirth",PropertyTypeClass.INTEGER)
cfg = cfg.build()

print(cfg)

3) Load graph

In [8]:

OraclePropertyGraphClass = JClass('oracle.pg.rdbms.OraclePropertyGraph')
opg = OraclePropertyGraphClass.getInstance(cfg)

print(opg)

In [9]:

pgxGraph = session.readGraphWithProperties(opg.getConfig())

print(pgxGraph)

{"error_handling":{},"date_format":"yyyy-MM-dd'T'HH:mm:ss.SSSSSSXXX","vert
ex_id_type":"long","max_num_connections":4,"format":"pg","attributes":
{},"password":"*******","db_engine":"RDBMS","vertex_props":[{"name":"categ
ory","type":"string"},{"name":"gender","type":"string"},{"name":"isoCod
e","type":"string"},{"name":"label","type":"string"},{"name":"listPric
e","type":"float"},{"name":"maritalStatus","type":"string"},{"name":"nam
e","type":"string"},{"name":"sourceId","type":"integer"},{"name":"subcateg
ory","type":"string"},{"name":"yearOfBirth","type":"integer"}],"name":"mys
ales","loading":{"load_edge_label":true},"edge_props":[{"name":"amount","t
ype":"float"},{"name":"orderDate","type":"string"},{"name":"quantity","typ
e":"float"},{"name":"stateProvince","type":"string"}],"jdbc_url":"jdbc:ora
cle:thin:@localhost:1521/ORCLPDB1","username":"scott"}

oraclepropertygraph with name mysales

PgxGraph[name=mysales_2,N=55595,E=695133,created=1551460273281]

Test graph
Count number of nodes and edges

In [10]:

print('Graph has ' + str(pgxGraph.getNumEdges()) + ' edges')
print('Graph has ' + str(pgxGraph.getNumVertices()) + ' vertices')

4) Use the graph

Sample PGQL query
PGQL specification can be found at http://pgql-lang.org/ (http://pgql-lang.org/)
PGX 2.5.1 coming with Oracle Database 18c supports PGQL 1.0, PGX 2.6.1+ supports PGQL 1.1

In [11]:

query = ("SELECT c.name, p.name, b.orderDate, b.amount, b.quantity "
 "WHERE (c WITH label = 'customer') -[b:buys]-> (p WITH label = 'product') "
 "ORDER BY b.orderDate, c.name LIMIT 10"
)
pgxResultSet = pgxGraph.queryPgql(query)

print(pgxResultSet)
print('----------------')

pgxResults = pgxResultSet.getResults()
for r in pgxResults.iterator():
 print("{} bought a quantity of {} of '{}' for a price of {} on {}".format(r.getStri
ng(0), r.getFloat(4), r.getString(1), r.getFloat(3), r.getString(2)[:10]))

Graph has 695133 edges
Graph has 55595 vertices

PgqlResultSetImpl[graph=mysales_2,numResults=10]

Abigail Ruddy bought a quantity of 1.0 of 'Envoy External 8X CD-ROM' for a
price of 63.57 on 1998-01-01
Adel Peebles bought a quantity of 2.0 of 'Deluxe Mouse' for a price of 61.
01 on 1998-01-01
Amarylis Nenninger bought a quantity of 1.0 of 'O/S Documentation Set - En
glish' for a price of 47.69 on 1998-01-01
Anand Rowley bought a quantity of 1.0 of 'Envoy External 8X CD-ROM' for a
price of 63.57 on 1998-01-01
Anand Rowley bought a quantity of 1.0 of '3 1/2" Bulk diskettes, Box of 10
0' for a price of 30.15 on 1998-01-01
Anand Rowley bought a quantity of 1.0 of '3 1/2" Bulk diskettes, Box of 5
0' for a price of 16.63 on 1998-01-01
Anand Rowley bought a quantity of 1.0 of 'Internal 8X CD-ROM' for a price
of 40.45 on 1998-01-01
Bailey Thompson bought a quantity of 1.0 of 'O/S Documentation Set - Engli
sh' for a price of 47.69 on 1998-01-01
Baird Rogers bought a quantity of 2.0 of 'CD-RW, High Speed, Pack of 10' f
or a price of 18.6 on 1998-01-01
Baird Rogers bought a quantity of 1.0 of 'Music CD-R' for a price of 19.64
on 1998-01-01

http://pgql-lang.org/

In [12]:

%load -s pgql2dictionary ../graphUtils.py
def pgql2dictionary(pgxResultSet):
 dk = {}
 resultElements = pgxResultSet.getPgqlResultElements()
 for i in range(len(resultElements)):
 re = resultElements.get(i)
 dk[re.getVarName()] = str(re.getElementType())

 # define the dictionary
 d = {}
 # add the empty list to dictionary
 for k in dk:
 d[k] = []

 # append values
 pgxResults = pgxResultSet.getResults()
 for r in pgxResults.iterator():
 for k in dk:
 if dk[k] == 'string':
 d[k].append(r.getString(k))
 elif dk[k] == 'vertex':
 d[k].append('vertex('+str(r.getVertex(k).getId())+')')
 elif dk[k] == 'edge':
 d[k].append('edge('+str(r.getEdge(k).getId())+')')
 elif dk[k] == 'long':
 d[k].append(r.getLong(k))
 elif dk[k] == 'double':
 d[k].append(r.getDouble(k))
 elif dk[k] == 'float':
 d[k].append(r.getFloat(k))
 else:
 #print(dk[k])
 d[k].append('N/A')
 return d

In [13]:

import pandas as pd

query = ("SELECT p.name as prod_name, SUM(b.quantity) as total_quantity, SUM(b.amount)
as total_amount "
 "WHERE (p WITH label = 'product') <-[b:buys]- (c) "
 "GROUP BY p.name"
)
pgxResultSet = pgxGraph.queryPgql(query)
print(pgxResultSet)

df = pd.DataFrame(pgql2dictionary(pgxResultSet))
df.head()

In [14]:

df.describe(include='all')

PgqlResultSetImpl[graph=mysales_2,numResults=71]

Out[13]:

prod_name total_quantity total_amount

0 External 6X CD-ROM 13043.0 577580.352684

1 O/S Documentation Set - German 12429.0 604081.908741

2 Comic Book Heroes 4572.0 101214.599781

3 Deluxe Mouse 12837.0 377400.310974

4 Music CD-R 14315.0 301848.198940

Out[14]:

prod_name total_quantity total_amount

count 71 71.000000 7.100000e+01

unique 71 NaN NaN

top O/S Documentation Set - Spanish NaN NaN

freq 1 NaN NaN

mean NaN 12941.450704 1.383181e+06

std NaN 6024.180200 2.461307e+06

min NaN 710.000000 2.793333e+04

25% NaN 8092.000000 2.572828e+05

50% NaN 12429.000000 5.130911e+05

75% NaN 16613.000000 1.040238e+06

max NaN 29282.000000 1.501164e+07

In [15]:

%matplotlib inline
df.nlargest(10, 'total_amount').plot(kind='bar',x='prod_name',y='total_amount')

Out[15]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f233c01ca20>

In [16]:

df.nlargest(10, 'total_quantity').plot(kind='bar',x='prod_name',y='total_quantity')

Analysis with graph algorithms
Run a pagerank algorithm on the graph to find the most important (top pagerank score) nodes.
A reasonable guess is the result will have products of the TOP 10 by quantity above as they probably are the
nodes with more connections.

Out[16]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f22e42061d0>

In [17]:

analyst = session.createAnalyst()
pagerank = analyst.pagerank(pgxGraph)
query = ("SELECT x, x.label, x.name, x."+pagerank.getName()+" "
 "WHERE (x) ORDER BY x."+pagerank.getName()+" DESC LIMIT 10"
)

pgxResultSet = pgxGraph.queryPgql(query)

print(pgxResultSet)
print('--------------------')

pgxResults = pgxResultSet.getResults()
for r in pgxResults.iterator():
 print("{}: {} - page rank = {}".format(r.getString(1), r.getString(2), r.getDouble(
3)))

Cleanup (free memory now)

In [18]:

pgxGraph.destroy()

Drop the graph in the database
Call a package method to drop the graph (and the related tables)
This is equivalent to

BEGIN
 OPG_APIS.DROP_PG('mysales');
END;

PgqlResultSetImpl[graph=mysales_2,numResults=10]

product: Mouse Pad - page rank = 7.002237185165857E-4
product: Keyboard Wrist Rest - page rank = 6.045444156492589E-4
product: O/S Documentation Set - English - page rank = 5.955638280537223E-
4
product: External 8X CD-ROM - page rank = 4.8124497979426615E-4
product: SIMM- 16MB PCMCIAII card - page rank = 4.6121060880009084E-4
product: CD-RW, High Speed Pack of 5 - page rank = 4.5177898111075276E-4
product: Model SM26273 Black Ink Cartridge - page rank = 4.461510617252293
6E-4
product: PCMCIA modem/fax 19200 baud - page rank = 3.75975313849342E-4
product: 1.44MB External 3.5" Diskette - page rank = 3.741326066667993E-4
product: Standard Mouse - page rank = 3.7212800945481855E-4

In [19]:

import cx_Oracle
con = cx_Oracle.connect('scott/Admin123@localhost:1521/ORCLPDB1')
cur = con.cursor()
cur.callproc('OPG_APIS.DROP_PG', ['mysales'])
cur.close()
con.close()

Save and load graphs from files
A graph can be saved and loaded as a file (or various files) on disk (mainly useful when not storing in a
database). Various formats are supported including a binary specific one which provides the most feature
(nodes labels, various nodes IDs type etc.).

Import required packages

In [1]:

from jpype import *
import os

Setup & start JVM

In [2]:

%load -s _get_pgx_class_path ../graphUtils.py
def _get_pgx_class_path(pgx_directory):
 class_path_list = []
 for root, dirs, files in os.walk(pgx_directory):
 for file in files:
 if file.endswith('.jar'):
 class_path_list.append(os.path.join(root, file))
 return ':'.join(class_path_list)

In [3]:

pgxLibsPath = '/opt/oracle/product/18c/dbhome_1/md/property_graph/lib'
startJVM(getDefaultJVMPath(), "-ea", "-Djava.class.path="+_get_pgx_class_path(pgxLibsPa
th))

Create a session on the PGX 3.1.1 server
Need to start the PGX 3.1.1 server before to continue:

$ORACLE_HOME/md/property_graph/pgx/bin/start-server

In [4]:

session = JClass('oracle.pgx.api.Pgx').createSession("http://localhost:7007/", "my_sess
ion")

Create a new graph

In [5]:

new builder
builder = session.newGraphBuilder(JClass('oracle.pgx.common.types.IdType').LONG)

define some nodes (node ID is unique!)
builder.addVertex(1).addLabel("person").setProperty("name", "Francesco").setProperty("c
ountry", "Italy")
builder.addVertex(2).addLabel("person").setProperty("name", "Christian").setProperty("c
ountry", "Switzerland")
builder.addVertex(3).addLabel("session").setProperty("name", "Starting an Oracle Analyt
ics Cloud Journey from 0")
builder.addVertex(4).addLabel("event").setProperty("name", "ITOUG 2019")
builder.addVertex(5).addLabel("country").setProperty("name", "Italy")
builder.addVertex(6).addLabel("country").setProperty("name", "Switzerland")
builder.addVertex(7).addLabel("continent").setProperty("name", "Europe")

define some edges (edge ID is unique!)
builder.addEdge(0, 1, 2).setLabel("friendOf")
builder.addEdge(1, 1, 3).setLabel("presents")
builder.addEdge(2, 2, 3).setLabel("presents")
builder.addEdge(3, 3, 4).setLabel("scheduledAt")
builder.addEdge(4, 1, 5).setLabel("livesIn")
builder.addEdge(5, 2, 6).setLabel("livesIn")
builder.addEdge(6, 5, 7).setLabel("partOf")
builder.addEdge(7, 6, 7).setLabel("partOf")
builder.addEdge(8, 4, 5).setLabel("userGroupOf")

Build new graph

In [6]:

graph = builder.build()

print(graph)

Visualize the graph

Out[5]:

<jpype._jclass.oracle.pgx.api.graphbuilder.EdgeBuilderImpl at 0x7f0534478c
88>

PgxGraph[name=anonymous_graph_15,N=7,E=9,created=1551460444407]

In [7]:

%load -s renderGraph ../graphUtils.py
def renderGraph(graph):
 from graphviz import Digraph

 # get all the vertices of the graph
 vertices = graph.getVertices()
 # create a new visualization
 dot = Digraph(comment='Graph')
 # loop over vertices
 for v in vertices.iterator():
 dot.node(str(v.getId()), v.getProperty("name"))

 # loop over vertices to get 'out' edges
 for v in vertices.iterator():
 edges = v.getOutEdges()
 # loop over 'out' edges
 for e in edges:
 dot.edge(str(e.getSource().getId()), str(e.getDestination().getId()), label
=e.getLabel())

 # return (display) graph
 return dot

In [8]:

renderGraph(graph)

Out[8]:

Francesco

Christian

friendOf

Starting an Oracle Analytics Cloud Journey from 0

presents

Italy

livesIn

presents

Switzerland

livesIn

ITOUG 2019

scheduledAt

userGroupOf

Europe

partOf

partOf

Save file on disk

In [9]:

currDirectory = !pwd
storeIn = currDirectory[0]+'/sample_graph.pgb'

storeConfig = graph.store(JClass('oracle.pgx.config.Format').PGB, storeIn)
cfgStoreFile = open(storeIn+'.json', 'w')
cfgStoreFile.write(storeConfig.toString())
cfgStoreFile.close()

print(storeConfig)

Load graph from disk

In [10]:

graphConfigFile = storeIn+'.json'

myGraph = session.readGraphWithProperties(graphConfigFile)

print(myGraph)

{"loading":{"load_edge_label":true,"load_vertex_labels":true},"error_handl
ing":{},"edge_props":[],"vertex_uris":["/opt/jupyter/git/jupyterlab/Graph
database from scratch/sample_graph.pgb"],"edge_uris":[],"format":"pgb","ve
rtex_id_type":"long","attributes":{},"vertex_props":[{"type":"string","nam
e":"name"},{"type":"string","name":"country"}]}

PgxGraph[name=sample_graph,N=7,E=9,created=1551460463683]

In [11]:

renderGraph(myGraph)

Cleanup
Delete files on disk (the graph file and the graph config JSON file)

Out[11]:

Francesco

Christian

friendOf

Starting an Oracle Analytics Cloud Journey from 0

presents

Italy

livesIn

presents

Switzerland

livesIn

ITOUG 2019

scheduledAt

userGroupOf

Europe

partOf

partOf

In [12]:

%%bash
rm sample_graph.pgb
rm sample_graph.pgb.json

Convert PGQL to SQL
When using an Oracle Database as storage it is possible to translate a PGQL query on graph in PGX into a
SQL query to be executed directly in the database (on the graph tables graphVT$ and graphGE$).

Import required packages

In [1]:

from jpype import *
import os

Setup JVM
Start JVM passing the PGX 3.1.1 classpath.
getDefaultJVMPath() will try to detect the location of java in the system, it can be replaced by the string
defining the path to libjvm.so .

In [2]:

%load -s _get_pgx_class_path ../graphUtils.py
def _get_pgx_class_path(pgx_directory):
 class_path_list = []
 for root, dirs, files in os.walk(pgx_directory):
 for file in files:
 if file.endswith('.jar'):
 class_path_list.append(os.path.join(root, file))
 return ':'.join(class_path_list)

In [3]:

pgxLibsPath = '/opt/oracle/product/18c/dbhome_1/md/property_graph/lib'
startJVM(getDefaultJVMPath(), "-ea", "-Djava.class.path="+_get_pgx_class_path(pgxLibsPa
th))

Convert PGQL to SQL
Based on the documentation (https://docs.oracle.com/en/database/oracle/oracle-database/18/spgdg/sql-
based-property-graph-query-analytics.html#GUID-7642327B-B973-4C48-90B1-1447F3D57CA5
(https://docs.oracle.com/en/database/oracle/oracle-database/18/spgdg/sql-based-property-graph-query-
analytics.html#GUID-7642327B-B973-4C48-90B1-1447F3D57CA5)) it's possible to translate PGQL into SQL
without executing it.

Sample PGQL query

https://docs.oracle.com/en/database/oracle/oracle-database/18/spgdg/sql-based-property-graph-query-analytics.html#GUID-7642327B-B973-4C48-90B1-1447F3D57CA5

In [4]:

pgql = ("SELECT c.name, p.name, b.orderDate, b.amount, b.quantity "
 "WHERE (c WITH label = 'customer') -[b:buys]-> (p WITH label = 'product') LIMIT
10"
)

Convert into SQL
If the graph defined doesn't exist and empty one is created in the database.

Some parameters to "drive" the generated SQL exists, details in
https://docs.oracle.com/en/database/oracle/oracle-database/18/spgdg/sql-based-property-graph-query-
analytics.html#GUID-E9CC82C3-BD5A-4581-AE26-2432D6929D44
(https://docs.oracle.com/en/database/oracle/oracle-database/18/spgdg/sql-based-property-graph-query-
analytics.html#GUID-E9CC82C3-BD5A-4581-AE26-2432D6929D44). For example the usage of the GT$
table.

https://docs.oracle.com/en/database/oracle/oracle-database/18/spgdg/sql-based-property-graph-query-analytics.html#GUID-E9CC82C3-BD5A-4581-AE26-2432D6929D44

In [5]:

Define Java>Python classes
OracleClass = JClass('oracle.pg.rdbms.Oracle')
OraclePropertyGraphClass = JClass('oracle.pg.rdbms.OraclePropertyGraph')
OraclePgqlExecutionFactoryClass = JClass('oracle.pg.rdbms.OraclePgqlExecutionFactory')

Create a connection to Oracle
oracle = OracleClass('jdbc:oracle:thin:@localhost:1521/ORCLPDB1', 'scott', 'Admin123')
Select property graph
opg = OraclePropertyGraphClass.getInstance(oracle, 'mysales')

Create an OraclePgqlStatement
ops = OraclePgqlExecutionFactoryClass.createStatement(opg)

Get the SQL translation (the 'pgql' query was defined in the previous cell)
sqlTrans = ops.translateQuery(pgql, "")

print(pgql)
print('--')
print(sqlTrans.getSqlTranslation())

Test SQL
Execute the generated query on the database

In [6]:

%load_ext sql
%sql oracle://scott:Admin123@localhost:1521/?service_name=ORCLPDB1

SELECT c.name, p.name, b.orderDate, b.amount, b.quantity WHERE (c WITH lab
el = 'customer') -[b:buys]-> (p WITH label = 'product') LIMIT 10
--
SELECT * FROM(SELECT T0$4.T AS "c.name$T",
T0$4.V AS "c.name$V",
T0$4.VN AS "c.name$VN",
T0$4.VT AS "c.name$VT",
T0$1.T AS "p.name$T",
T0$1.V AS "p.name$V",
T0$1.VN AS "p.name$VN",
T0$1.VT AS "p.name$VT",
T0$3.T AS "b.orderDate$T",
T0$3.V AS "b.orderDate$V",
T0$3.VN AS "b.orderDate$VN",
T0$3.VT AS "b.orderDate$VT",
T0$0.T AS "b.amount$T",
T0$0.V AS "b.amount$V",
T0$0.VN AS "b.amount$VN",
T0$0.VT AS "b.amount$VT",
T0$2.T AS "b.quantity$T",
T0$2.V AS "b.quantity$V",
T0$2.VN AS "b.quantity$VN",
T0$2.VT AS "b.quantity$VT"
FROM "SCOTT".MYSALESGE$ T0$0,
"SCOTT".MYSALESVT$ T0$1,
"SCOTT".MYSALESGE$ T0$2,
"SCOTT".MYSALESGE$ T0$3,
"SCOTT".MYSALESVT$ T0$4
WHERE T0$0.K=n'amount' AND
T0$1.K=n'name' AND
T0$2.K=n'quantity' AND
T0$3.K=n'orderDate' AND
T0$4.K=n'name' AND
T0$0.DVID=T0$1.VID AND
T0$0.EID=T0$2.EID AND
T0$0.EID=T0$3.EID AND
T0$0.SVID=T0$4.VID AND
(T0$4.T = 1 AND T0$4.V = n'customer') AND
(T0$1.T = 1 AND T0$1.V = n'product') AND
(T0$0.EL = n'buys' AND T0$0.EL IS NOT NULL))
WHERE ROWNUM <= 10

Out[6]:

'Connected: scott@'

In [7]:

%%sql
SELECT * FROM(SELECT T0$4.T AS "c.name$T",
T0$4.V AS "c.name$V",
T0$4.VN AS "c.name$VN",
T0$4.VT AS "c.name$VT",
T0$1.T AS "p.name$T",
T0$1.V AS "p.name$V",
T0$1.VN AS "p.name$VN",
T0$1.VT AS "p.name$VT",
T0$3.T AS "b.orderDate$T",
T0$3.V AS "b.orderDate$V",
T0$3.VN AS "b.orderDate$VN",
T0$3.VT AS "b.orderDate$VT",
T0$0.T AS "b.amount$T",
T0$0.V AS "b.amount$V",
T0$0.VN AS "b.amount$VN",
T0$0.VT AS "b.amount$VT",
T0$2.T AS "b.quantity$T",
T0$2.V AS "b.quantity$V",
T0$2.VN AS "b.quantity$VN",
T0$2.VT AS "b.quantity$VT"
FROM "SCOTT".MYSALESGE$ T0$0,
"SCOTT".MYSALESVT$ T0$1,
"SCOTT".MYSALESGE$ T0$2,
"SCOTT".MYSALESGE$ T0$3,
"SCOTT".MYSALESVT$ T0$4
WHERE T0$0.K=n'amount' AND
T0$1.K=n'name' AND
T0$2.K=n'quantity' AND
T0$3.K=n'orderDate' AND
T0$4.K=n'name' AND
T0$0.DVID=T0$1.VID AND
T0$0.EID=T0$2.EID AND
T0$0.EID=T0$3.EID AND
T0$0.SVID=T0$4.VID AND
(T0$4.T = 1 AND T0$4.V = n'customer') AND
(T0$1.T = 1 AND T0$1.V = n'product') AND
(T0$0.EL = n'buys' AND T0$0.EL IS NOT NULL))
WHERE ROWNUM <= 10

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[7]:

c.name$T c.name$V c.name$VN c.name$VT p.name$T p.name$V p.name$VN p.name$VT

